Received 10 August 2005 Accepted 12 August 2005

Online 17 August 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Masood Parvez,^a Warren E. Piers^a and Ioan Ghesner^b*

^aDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, and ^bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Correspondence e-mail: parvez@ucalgary.ca

Key indicators

Single-crystal X-ray study T = 123 KMean σ (C–C) = 0.009 Å Disorder in solvent or counterion R factor = 0.040 wR factor = 0.087 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The crystal structure of thallium perfluorotetraphenylborate, $Tl^+ \cdot B(C_6F_5)_4^-$, consists of discrete partial occupancy Tl cations lying on threefold rotation axes, surrounded by perfluorotetraphenylborate anions, with $Tl \cdot \cdot \cdot F$ interactions in the range 2.942 (4)–3.663 (4) Å.

Thallium tetrakis(pentafluorophenyl)borate

Comment

There has been increased interest in the synthesis and chemistry of weakly coordinating anions due to their importance in catalysis, electrochemistry, and in the generation of reactive cationic complexes and ionic liquids (Krossing & Raabe, 2004). Recently developed anions that show weak nucleophilicity are $B(C_6F_5)_4^-$, $MeB(C_6F_5)_3^-$, $B[3,5-C_6H_3(CF_3)_2]_4^-$ (Strauss, 1993; Piers & Chivers, 1997), and the carborane $CB_{11}H_{12}^{-}$ and its derivatives (Reed, 1998). Of these, $B(C_6F_5)_4^{-}$, first prepared as a lithium salt (Massey & Park, 1986), is of particular interest, due to its high stability and ready availability. Alberti & Porschke (2004) have recently published a variation to this anion, that is the thallium salt $TlB(C_6F_5)_4^{-}$. We have been using this salt to generate reactive boron cations and found that X-ray quality crystals could be grown from a CH₂Cl₂/hexane mixture at room temperature. We present here the structure of thallium perfluorotetraphenylborate, (I).

In the crystal structure of (I) (Fig. 1), discrete Tl cations lie on threefold rotation axes. The partial occupancy of 0.25 for the Tl cation is required by the 1:1 cation–anion stoichiometry. The cations are surrounded by perfluorotetraphenylborate anions, with short $Tl \cdots F1$ interactions of 2.942 (4) Å; the rest of the $Tl \cdots F$ distances are in the range 3.195 (4)–3.663 (4) Å, showing weak interactions (Fig. 2). Similar $Tl \cdots F$ interactions have been reported in the structure of thallium tetrakis[3,5-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

bis(trifluoromethyl)phenyl]borate (Hughes *et al.*, 1997). The geometry around the B atom is distorted tetrahedral, with two C-B-C angles of 101.6 (4)° and the others with a value of 113.6 (2)°. The remaining dimensions in the anion are normal with mean B-C, C-C and C-F distances of 1.656 (6), 1.380 (10) and 1.351 (14) Å, respectively.

Experimental

The synthesis of the title compound was performed according to the procedure described in the literature by Alberti & Pörschke (2004). Single crystals for this study were grown by slow diffusion of *n*-hexane into a dichloromethane solution of thallium perfluorotetra-phenylborate.

Crystal data

Tl⁺·C₂₄BF₂₀⁻ $M_r = 883.42$ Cubic, $I\overline{4}3d$ a = 19.095 (12) Å V = 6962 (8) Å³ Z = 12 $D_x = 2.528$ Mg m⁻³ Mo K α radiation

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\min} = 0.523, T_{\max} = 0.703$ 2240 measured reflections 1236 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.087$ S = 1.031236 reflections 106 parameters $w = 1/[\sigma^2(F_o^2) + (0.0365P)^2 + 3.02P]$ where $P = (F_o^2 + 2F_c^2)/3$

Cell parameters from 2240 reflections $\theta = 4.0-27.5^{\circ}$ $\mu = 7.14 \text{ mm}^{-1}$ T = 123 (2) KPlate, colorless $0.10 \times 0.08 \times 0.05 \text{ mm}$

949 reflections with $I >$	$2\sigma(I)$
$R_{\rm int} = 0.051$	
$\theta_{\rm max} = 27.5^{\circ}$	
$h = -24 \rightarrow 24$	
$k = -17 \rightarrow 17$	
$l = -17 \rightarrow 17$	

 $\begin{array}{l} (\Delta/\sigma)_{\rm max}=0.001\\ \Delta\rho_{\rm max}=0.65\ {\rm e}\ {\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.69\ {\rm e}\ {\rm \AA}^{-3}\\ {\rm Extinction\ correction:\ SHELXL97}\\ {\rm Extinction\ coefficient:\ 0.00038\ (5)}\\ {\rm Absolute\ structure:\ Flack\ (1983),}\\ 504\ {\rm Friedel\ pairs}\\ {\rm Flack\ parameter:\ 0.007\ (13)} \end{array}$

Table 1

Selected geometric parameters (Å, °).

F1-C2	1.364 (7)	C2-C3	1.394 (9)
F2-C3	1.338 (7)	C3-C4	1.363 (9)
F3-C4	1.353 (7)	C4-C5	1.378 (9)
F4-C5	1.333 (6)	C5-C6	1.381 (9)
F5-C6	1.368 (7)	$B1-C1^{i}$	1.655 (6)
C1-C6	1.375 (8)	B1-C1 ⁱⁱ	1.655 (6)
C1-C2	1.386 (8)	B1-C1 ⁱⁱⁱ	1.656 (6)
C1-B1	1.656 (6)		
$C1^{i} - B1 - C1^{ii}$	101.6 (4)	$C1^{i} - B1 - C1$	113.6 (2)
Symmetry codes: (i) $-x + \frac{1}{2}, y, -z + 1.$	i) $z - \frac{1}{4}, -y + \frac{1}{4}$	$-x + \frac{3}{4}$; (ii) $-z + \frac{3}{4}$, -	$-y + \frac{1}{4}, x + \frac{1}{4};$ (iii)

The final difference map was free of any chemically significant features.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve

ORTEPII (Johnson, 1976) drawing of (I), with displacement ellipsoids plotted at the 50% probability level. [Symmetry codes: (*) $z - \frac{1}{4}, \frac{1}{4} - y, \frac{3}{4} - x;$ (') $\frac{1}{2} - x, y, 1 - z;$ (#) $\frac{3}{4} - z, \frac{1}{4} - y, \frac{1}{4} + x.$]

structure: *SAPI* (Fan, 1991); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

References

Alberti, D. & Pörschke, K.-R. (2004). Organometallics, 23, 1459-1460.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Fan, H.-F. (1991). SAP191. Rigaku Corporation, Tokyo, Japan.
Flack. H. D. (1983). Acta Cryst. A39, 876-881.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

- Hughes, R. P., Lindner, D. C., Rheingold, A. L. & Yap, G. P. A. (1997). Inorg. Chem. 36, 1726–1727.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Krossing, I. & Raabe, I. (2004). Angew. Chem. Int. Ed. 43, 2066-2090.
- Massey, A. G. & Park, A. J. (1986). Organometallic Synthesis, edited by R. B. King & J. J. Eisch. Vol. 3, pp. 461–470. New York: Elsevier.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Piers, W. E. & Chivers, T. (1997). Chem. Soc. Rev. 26, 345-354.
- Reed, C. A. (1998). Acc. Chem. Res. 31, 133-139.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Strauss, S. H. (1993). Chem. Rev. 93, 927-942.